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Abstract: In this paper, we present an effective technique combinddidem homotopy analysis method and traditional Padé
approximation so-called (HAM Padg), the technique to iobthe analytic approximation solution of a certain type ohlinear
boundary value problem with one boundary condition at ifinfhe analytic series solution obtained from the homotapglysis
method and the Padé diagonal approximation to handle thedaoy condition at infinity. This technique apply to the bdary value
problem resulting from the magnetohydrodynamic (MHD) wiss flow due to a shrinking sheet. The proposed techniquesssido
obtain the two branches of solutions for important param€&emparison of the present solution is made with the exdgséblution and
excellent agreement is noted.
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1 Introduction therefore, applying the final value theorem for Laplace
transform on the boundary condition at infinity and
pplying this condition to the corresponding Padé
pproximateft/t] on the series solution to find the
nknown parameter. It is worth mentioning that the
roposed scheme is an elegant recipe of HAM and Padé
pproximation 15]. The advantage of proposed idea is its
capability of combining two powerful techniques for
obtaining fast convergent series for nonlinear equations.

Nonlinear phenomena, that appear in many areas o
scientific fields such as solid state physics, plasm
physics, fuid mechanics, population models and chemica
kinetics, can be modelled by nonlinear ordinary a
differential equations. In particular, the nonlinear oty
differential equations with one boundary condition at
infinity, that will be examined here, is of much interest. In
most cases, analytic solutions of these differential Boundary layer behaviour over a moving continuous
equations are very difficult to achieve, so these equationsolid surface is a relevant type of flow which is present in
may be approximated using semi-analytical techniquesnany industrial processes such as manufacture and
and its modifications such as differential transform drawing of plastics and rubber sheets, processing of
method (DTM)[L,2], homotopy perturbation method sheet-like materials in paper production, cooling of
(HPM)[3], Adomian’s decomposition method(ADM)[  metallic sheets and manufacture of metal and polymer
5], variational iteration method (VIMY]. However, these solid cylinders L6 and crystal growing just to name a
methods cannot provide us with a simple way to adjustfew. In this paper, the proposed technique is used to solve
and control the convergence region and rate of givingthe magnetohydrodynamic (MHD) viscous flow due to a
approximate series. Therefore, in this work , we used theshrinking sheet]7], Wang [L8] was the first to study the
homotopy analysis method, first developed by Li@p [ unsteady viscous flow induced by a shrinking film. The
for general nonlinear problems, In recent years, thisproof of the existence and (non) uniqueness, the exact
method has been successfully employed to solve mangolutions, both numerical and in closed form, are given by
types of nonlinear problems in science and engineeringMiklavcic and Wang 19 for the steady viscous
such as §]-[14]. The proposed technique obtained the hydrodynamic flow due to a shrinking sheet for a specific
series solution by the homotopy analysis method, but thevalue of the suction parameter. Miklavcic and Waag][
series solution containing the unknown parameter concluded that the solution for shrinking sheets may not

* Corresponding author e-maflany.mohamed@bhit.bu.edu.eg

(@© 2016 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/amis/100421

1426 NS 2 M. S. Semary, H. N. Hassan: An effective approach for solving

be unique at certain suction rates for both respectively. Thus agincreases from 0 to 1, the solution
two-dimensional and axisymmetric flows. Sajid and ¢(n,a,q) varies from the initial guessp(n,a) to the
Hayat [L7] studied the magnetohydrodynamic (MHD) solution f(n,a). Expanding¢(n,a,q) in the Taylor
viscous flow due to shrinking sheet for the cases ofseries with respect tg, one has

two-dimensional and axisymmetric shrinking by

traditional homotopy analysis method (HAM), but in this w

study solving the problem by present technique (HAM ¢(n,a,9) = fo(n,a) + Z fa(n, a), (8)
Padé) for these cases, shows the results obtained by HAM =1
Padé good agreement compared to exact soluBfrend  \where

other methods. Also the proposed technique has 10"¢p(n,a,q)
succeeded to pridect and obtain the two branches of fn(n,a) = n aqn
solutions for important parameters.

9)

g=0

The initial guessfo(n, a) of the solutionf(n,a) can be
determined by the rule of solution expression as follows.

2 The homotopy analysis method coupled expressed by a set of base functions
with Padé approximations(HAM Padg)

{(n)k’kzo,l,Z,B....}, (10)
Consider the nonlinear ordinary differential equation in
unbounded domain: in the form .
fn,a)=YS fi(a K 11
(O g(f 0 10) Sy =0 @ (n.@)= 3 file) (n) (11)

The initial guessfp(n,a) can be chosen from the

With boundary conditions equation 11) so that it achieves the boundary

dif(n) condition®). The second goal is to determine the higher
0 =A, f'(N)|l«=B,i=0,1,2,....(r—2) (2)  ordertermsfy(n,a)(n,1,2,....). Define the vector
x=0
g(f,f’,...,f<’>) is the nonlinear function, andn ) is the ui(n) = {u(n,a),u(n,a),...,u(n,a)}  (12)
non-homogeneous term. The equatiépdan be write in ] o . . )
the form Differentiating equation &) n times with respect to the

N[f(n)] =0, 3) embedding parametgrand then setting = 0 and finally

.. i B . dividing them byn!, we have the so-calledth-order
whereN is a nonlinear operaton; denote independent geformation equation:

variable, andf () is an unknown function. The first step N

in this technique adds the new conditiéf—Y(0) = a,  L[fa(n,a) — xnfn_1(n,a)] = ﬁH(n)R(fn_l(n,a))(B)
wherea is unknown parameter and will determine later,

we apply the traditional homotopy analysis method on thewhere

problem < P 1 0" *(Ne(n.a.q)]
N[f(m)] =0, @ R(fpamna) - -2 T o, @4
[ d
d'f(n) -1 an
. =A,f Y0 =a (5) [ 0Owhenn<1
dx |0 Xn=1 1 otherwise (15)
the general zero-order deformation equation and the\o, the solution of the nth-order deformation

corresponding boundary conditions are as follows

1—q)L[o(n,a.q) - fo(n,a)] = -
(L= aLlp(n,,9) = oln ‘L),lﬂ(n)mw(n,a’q)])’(es) fo(n.0) = Xnfo1(m.0) + L L [AR(Toa(n.0))] (26)

where q € [0,1] denote the so-called embedding and its boundary conditiors(become

parameterh # 0 is an auxiliary parametel, denotes is an .

auxiliary linear operator,@(n,a,q) is an unknown d'f(n)

function,fo(n, a) is an initial guess of (n,a) andH(n) dxi

denotes a non-zero auxiliary function. It is obvious that

when the embedding parameter 0 andq = 1, equation ~ can be easily solve the equatiori$) and (L7) by using

(6) becomes some symbolic software programs such as Mathematica
or Maple. In this way, starting byp(17, ), we obtain the

o(n,a,0) = fo(n,a), e(n,a,1)=f(n,a) (7)  functionsf,(n,a)forn,1,2,3,....formequations16,17)

equationt3) for n> 1 whenH () = 1 becomes

=0, fY(0) =0, (17)
x=0
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successively. Accordingly, tHé —th order of approximate
solution of the problem4) and §) is given by

N

f(nva) = FN(nva) = Zofn(nva)

(18)

The auxiliary parametdr can be employed to adjust the
convergence regiofRy) of the series in the traditional

homotopy analysis solution. By means of the so-calledy

h-curve, it is straightforward to choose an appropriate
range forh which ensures the convergence of the solution
series. As pointed out by LiaB{], the appropriate region
for h is a horizontal line segment, but the series
solution(8) obtained by HAM Padé technique containing
the unknown parameter, to find the convergence region
(Rrg) Of this series, we can writef (®) (0, a) from
equation 18), as follows

£8)(0,R,a) =R (0,h,a)

:_igiﬁ(ﬁ)ai, B=rr+1lr4+2... (19

The auxiliary parametdr can be employed to adjust the
convergence region of the series in the HAM Padé
technique solutiori(@), by plot gir (h),i(0,1,..,y) against

to the convergence controlling auxiliary paramdigethe
appropriate region foh is a horizontal line segment the
convergence regions of each functigr(h), but the
convergence regionRf,) of the series(8) discover by
the intersection between the convergence regiogs tb)
functions, in general, the convergence regiBR,{ is the
intersection between the convergence regiongj;4¢h)
functions. Some problems don’t need to do so, if
£(0(0,h,a) = g(h)f(a) then the convergence region not
depend on the unknown parameterby plotting g(h), we
get the convergence regidi,). The advantage of the

3 Application

3.1 Problem Satement

In Cartesian coordinates the continuity and momentum
equations for MHD viscous flow are

ou ov ow

&‘FE‘FE— (20)
u_u 0w 1dp oB2
ox dy 90z pox p

9’u  d%u o4

V(Wﬁ-a—yz‘f'ﬁ) (21)

WOV OV OV 10p 0By
ox dy 0z pady p

0>v  0*v od%v
TEALEVCAL VAL L1
ox oy dz  poz

2w  d°w 9w
ST 2
v<0x2+dy2+022> (23)

where v = u/p is the kinematic viscosityo is the

electrical conductivity. We have applied the magnetic
field By in the z-direction and the induced magnetic fields
neglected. The above equations are derived by
considering the zero electric field and incorporating the
small magnetic Reynold number assumption. The
boundary conditions applicable to the present flow are

u=—-ax,v=—-am-1)y, w=-W, aty=0,
u—0asy— o (24)

In which a > 0 is shrinking constanwy/ is the suction

velocity.m= 1 when the sheet shrinks iadirection only

and m = 2 when the sheet shrinks axisymmetrically.
Introducing the following similarity transformations

proposed scheme to find the convergence region of thel=axf’(n, v=a(m-1)yf'(n),

series(8) not depend on the unknown parameder

Theorem 2.1[22]. If the function f (1) is bounded for all
n>0:|f(n)] <M and thenirogf(n) = f(c0) exists, then

gToSF(S) = f(»), where F(S) Laplace transform of

f(n).
Obviously in equation ¥8) the function f(n,a)

Containing the unknown parameter. Using Theorem
2.1, the conditionf’(«) = B leads to the condition
gToSF(S) = B, whereF(S) Laplace transform of’(n).

Applying this condition to the corresponding Padé

approximate, we can use some symbolic software
programs such as Mathematica or Maple to perform this

task

w=—vavmf(n), n = \/gz (25)

equation R0) is identically satisfied and equatio23) can
be integrated to given

P_ W W ongant
p 0z 2

and equations21), (22) and @4) reduces to the following
boundary value probler[]

£2(n)+mf(n)f"(n)

(26)

"

f7(n)—M?t'(n) -

=0, (27)
f(0)=s,f'(0) = —1,f'(0) =0,

wheres=W/my/vaandM? = g By?/ pa.

(28)
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3.2 The Method I mplementation and Results

The new boundary condition accordir) (
f(0)=s, f'(0)=-1, f"(0) =a, (29)

where a > 0. We choose only initial gues$(n,a)
according to initial conditionZ9) and equationX1)

nZ
fO(nva):S_n_Fa?a (30)

and choose the auxiliary linear operator

9°p(n.a,
L[(P(’L a, p)] = %a (31)
with the property
L [co+ €10 +con?] = 0. (32)

The solution of thenth-order deformation equatiori )
forn>1

fa(n,a) = xnf_1(n, a) +ﬁ///fr’{il+
n—-1
/ /

Jzo(mf”*l*iff/_ n1fj) -

M2f;_ dndndn+co+cin +con? (33)

Fig.1, h-curves ofgpz(h) andgiz(h) whenm=2s=
1, M = 2,the convergence regiolR{,) of series 86) is
the intersection between the convergence regioggstd)
andgis(h), but from the equatior3() and Figl, find that
the functionsgps(h) andgis(h) in the same behavior but
movable only on the vertical axis therefore this problem is
a special case, can write

t3(0,R,a) = F310(0,R,a) = g(R) (—1+M?+msa)
= R (10+ 450+ 1207 + 210R° 4 252" + 2100° +
12078 + 4507 + 1058+ﬁg) (~1+M24+msa)  (38)

From equatior8), the function ) (0,Ra) is
product of two functions, one only im(g(h)) and other in
the parameterg, M,s andm, this means the convergence
region of the series solution not depend on the parameters
a, M,s andm, also the convergence region of the series
solution constant region for all different values of
parameters thereforé)”(0,h,a) = g(h), we can plotting
g(h), against to the convergence controlling auxiliary
parameterh, to find the convergence region of the
solution series fi@, theh-curve ofg(h) for N —th order
of approximation, it is easy to discover the valid region of
h that corresponds to the line segment nearly parallel to
the horizontal axis (constagih) value), from fig2. the
region of convergencBf,) is [—0.5,—1.2].

Co,C1,C, are determined by the boundary condition
0

equation
f(0)=0, f'(0)=0, f"(0)=0 (34)
Now given the solution equatio®®) atn=1

fa(n,a) = iﬁ(—20+ 20M?+20msa ) n*

120

1 2 4
+1—20ﬁ(100—5ma—5M a)n

1 2 2\ 5,5
+mﬁ(—2a +ma‘)n (35)

fa(n)(n = 2,3,4,...) can be calculated similarly, the

approximate analytic solution is
N
f(nva)gFN(nva): Z)fn(naa)v (36)
n=

Hencef®(0,R, a) is

t3(0.h,a) = F®10(0,R, @) = gos(R) + gua(Mar =
A(—1+M?) (10+ 450+ 1207 + 210R° + 250" +

210R° + 12(ﬁ5+4557+1058+ﬁg) +
Amsa (10 457+ 12077 4 2107° + 252" +
210F° + 12008 + 4507 + 10FB + ﬁg) 37)

-0.
-1.0

—1.5]
13

-2.0

2.5
Y03
—-3.0

. . . -
-15 -1.0 -0.5 0.0

Fig. 1: h-curves ofggs(h) andgy3(h) whenm=2,s=1, M =2
at 10—th order

]
1 L L L L L L L h
F/-14 -12 -10 -08 -06 -0.4 -02

Fig. 2: h-curve ofg(h) in equation 88) for differentN —th order
of approximation
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From equation19), f*)(0,h, a) is method accurate thar24,25 to the numerical solution
@ @ o o [23, tablel, also shows the value of has not changed to
f(0,h,a) = F¥14(0,h, a) = m(—1+M?) sh*(45+ increase the number of order approximation frisina= 10

2400+ 6307 + 10068 + 10507 + 720R° + to 15 order. Tabl@. shows that the value af = " (0) for

7 5 the diagonal approximat®/6] for different values ofa
3151° + 80N +9ﬁs) + (P’ A% ( 45+ 2400+ when m = 2,s = 1M = 2. Table 2, shows when
63072 -+ 1009+ + 1050 -+ 720/ + h e [-0.7,—1.1] given the value ofx six decimal places

7 5 uncertain compared by the numerical solut#}] this
315 +80R" + ORF) + (—m—2+ M?) A(10+ means the solution obtained by the present method is

45A+ 1202 + 210R° + 2527 + more general as compared to homotopy perturbation
2 method coupled with Padé approximations(HPM-Padg)
2100° + 1200° + 450 +1OHB+HQ)) a (39) [24 and Adomian decomposition nethod coupled with

Padé approximations (ADM-Pad&4q.
In spite of f(3(0,h, a) in this problem is a special case, it PP ( A

is possible to clarify the idea of the proposed scheme to

find a convergence regiofi(Rpy), fig.3. h-curves of ,

goa(h) and gi4(h) in equation 89) whenm = 2s=1, Table 1: Comparison of the value af = f  (0) obtained by the
M = 2 at 10— th order, the convergence region the present method and the other methods when2,s=1,M =2
intersection betweego4(h) and gi4(h) almost the same ath= —1 and differenN —th order of approximation

region intersection betweegps(h) andgy3(R) , with the orocent etog - 1 N*”lz{der 289;21032 2895’1032
assertion that the functiomsa(h) andgaa(h) do not have resent Vetho © {5,5% el Mt
the same behavior. [676 2.8016046 | 2.8916046
777 2.8016046 | 2.8916046
HPM-Padépd] [10710] 2.89161
ADM Padéps] [25/25] 2.89160
HAM[17] 2.89160
20¢ Numericalp3] 2.8916045

151

10

Table 2: The value ofa obtained by the present method for
different values of at 15—th order, whers=1, m=2, M =2

A —05 [ 07 [-08 [—1 [-11 [-12
a[6/6] 2.891559| 2.8916049| 2.8916046| 2.8916046| 2.8916048| 2.891607
Numericalp3] 2.8916045

Fig. 3: h-curves ofgpa(h) andgi4(h) whenm=2,s=1 M =2
at 10—th order

For the special case of = 1, the exact solution of
, " ) equation®?) is [20]

To find the unknown parameter = f (0). Using
Theorem 2.1, the conditionf’(w) = Oleads to the f(p)=s— 2 +
condition SILrgSF(S) = 0, whereF(S) Laplace transform St/ — (4—4M?2)

of f/(n). Applying this condition to the corresponding 2 P (o)

Padé approximatg /t] for small values oft, we get the st 2 (4—4M2)e -~ , (40)
value of unknown parameter = f"(0). Table1, Shows

comparison of the value ot = f"(0) obtained by the s+ /F— (4—aM?)

present method and the numerical solutiog3] f"(0)= > (41)
traditional homotopy analysis method(HAM)], ) N ,
homotopy Perturbation method coupled with Pade!n order to have a physical solutionf”(0) > 0 is

approximations(HPM-  Pad@f] and  Adomian requiredp( so th2e solution exists only fos is positive
decomposition  method  coupled  with  Pade With & > 4(1-M?); also, wherM > 1 we find only one

approximations(ADM-Pad&F when m = 2, s = 1, solution for different values o, however, for 0< M < 1,

M =2 at h = —1 and differentN — th order of there are two solution branches, for examile= 0.5 of
approximation, tablel, also shows the good agreement €quation 41) we find that the two solutions arest> /3,
between results obtained by the present method wittets= /3 find only one solution and < v/3 no solution.
other applied methods, in spite of the present methodrable 3, shows a comparison of the present method
need only small values afbut other methods like@, 25] multiple solutions fora = f”(O) against the exact
used large values of and the results of the present solution and numerical solution when= 1,M = 0.5 for
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different values o6 > /3 ath = —1, table3, shows when @
s> /3 the results of the present method are the same of

the exact solution but the numerical meth@$|[found %
only the upper solution, also from table3, the valuexof -04;
obtained by the present method wheer: /3 only one  -os
solution, the lower and upper solution to have the same, 4
value according to the exact solutidd), therefore the
results clearly demonstrate the efficiency, accuracy and"’. ‘ ‘ ‘ ‘ -
simplicity of the present method. We don’t compare with
[24,25] because the authors o24,25] have not studied

this case. The figs4 and 5 show the form of velocity

M=1,1.3,15,1.58,

Table 3: Comparison of the present method multiple solutions

" . . .
for a = f (0) against the exact solutid®)] and numerical )
solutionR3] whenm= 1, M = 0.5 for different values of at 0.0p
h=-1 -0.2
Lower Solution Upper Solution 04 M=1, 1.3,1.5, 1.8,
s | HAM Pade[6/6] | [20] HAM Pade[6/6] | [23] 120] -4
1.9 | 0550488 0.559488 | 1.3405125 1.3405083| 1.3405125 o
1.85 | 0.600000 0.600000 | 1.250000 1.250000 | 1.250000
1.8 | 0.655051 0.655051 | 1.1449489 1.1449427| 1.1449489 —os8l
1.75 | 0.750000 0.750000 | 1.0000000 1.0000000| 1.0000000 fia 56
1.73 | 0.8660254 0.8660254 | 0.8660254 - 0.8660254 -1.0f i95(0)
0 1 2 3 4 5 U

profiles f’(n) for different values of the parametesand Fig. 5: The velocity profile obtained by present method when
M. In these figures (a) corresponds to theS=1and severalvalues® (a)m=1(b)m=2
two-dimensional shrinking = 1) and (b) corresponds to

axisymmetric shrinkingro = 2). It is shown in fig 4 that

the velocity increases by increases the suction pararseter

for both two dimensional and axisymmetric shrinking.

The effect of the Hartman numb®&t on the velocity are

similar to that of suction parameter and are shown in fig.

5. ap

0.0

—0.2+

/() -0.4f
0.0

s=1.75,1.8,1.85,1
-0.61

—0.2F

—0.4f s=0.2,0.6,1,14,1 o8- e Lower solutior

— Upper solutior
-1.0]

2 4 6 8 g

‘ ‘ ‘ ‘ ‘ ‘ Fig. 6: The velocity profile (lower and upper) obtained by present
0 1 2 3 4 5 method whem = 1, M = 1/2 and several values ef

s=0.2,06,1,14,1

Fig. 6 shows the multiple solutions obtained by
present method for the two dimensional shrinking case
whenM = 1/2 and several values & from fig. 6, the
lower solution profiles are generally further away from
. - . . " s the wall compared with the upper solution branch even

though the suction parametsrat the sheet is the same.

Fig. 4: The velocity profile obtained by present method when Finally , as shown in figl. Comparison off () andf’(n)
whenM = 2 and several values effa)m= 1 (b)m= 2 obtained by the present method against the exact solution
whenm= 1, M = 1/2 ands = /3, it has been attempted
to show the accuracy, capabilities of the present method.

fig 4(b)
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