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Abstract: In this paper, we present an effective technique combined between homotopy analysis method and traditional Padé
approximation so-called (HAM Padé), the technique to obtain the analytic approximation solution of a certain type of nonlinear
boundary value problem with one boundary condition at infinity. The analytic series solution obtained from the homotopyanalysis
method and the Padé diagonal approximation to handle the boundary condition at infinity. This technique apply to the boundary value
problem resulting from the magnetohydrodynamic (MHD) viscous flow due to a shrinking sheet. The proposed technique success to
obtain the two branches of solutions for important parameter. Comparison of the present solution is made with the existing solution and
excellent agreement is noted.
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1 Introduction

Nonlinear phenomena, that appear in many areas of
scientific fields such as solid state physics, plasma
physics, fuid mechanics, population models and chemical
kinetics, can be modelled by nonlinear ordinary
differential equations. In particular, the nonlinear ordinary
differential equations with one boundary condition at
infinity, that will be examined here, is of much interest. In
most cases, analytic solutions of these differential
equations are very difficult to achieve, so these equations
may be approximated using semi-analytical techniques
and its modifications such as differential transform
method (DTM)[1,2], homotopy perturbation method
(HPM)[3], Adomian’s decomposition method(ADM)[4,
5], variational iteration method (VIM)[6]. However, these
methods cannot provide us with a simple way to adjust
and control the convergence region and rate of giving
approximate series. Therefore, in this work , we used the
homotopy analysis method, first developed by Liao [7]
for general nonlinear problems, In recent years, this
method has been successfully employed to solve many
types of nonlinear problems in science and engineering
such as [8]-[14]. The proposed technique obtained the
series solution by the homotopy analysis method, but the
series solution containing the unknown parameterα,

therefore, applying the final value theorem for Laplace
transform on the boundary condition at infinity and
applying this condition to the corresponding Padé
approximate [t/t] on the series solution to find the
unknown parameter. It is worth mentioning that the
proposed scheme is an elegant recipe of HAM and Padé
approximation [15]. The advantage of proposed idea is its
capability of combining two powerful techniques for
obtaining fast convergent series for nonlinear equations.

Boundary layer behaviour over a moving continuous
solid surface is a relevant type of flow which is present in
many industrial processes such as manufacture and
drawing of plastics and rubber sheets, processing of
sheet-like materials in paper production, cooling of
metallic sheets and manufacture of metal and polymer
solid cylinders [16] and crystal growing just to name a
few. In this paper, the proposed technique is used to solve
the magnetohydrodynamic (MHD) viscous flow due to a
shrinking sheet [17], Wang [18] was the first to study the
unsteady viscous flow induced by a shrinking film. The
proof of the existence and (non) uniqueness, the exact
solutions, both numerical and in closed form, are given by
Miklavcic and Wang [19] for the steady viscous
hydrodynamic flow due to a shrinking sheet for a specific
value of the suction parameter. Miklavcic and Wang [19]
concluded that the solution for shrinking sheets may not
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be unique at certain suction rates for both
two-dimensional and axisymmetric flows. Sajid and
Hayat [17] studied the magnetohydrodynamic (MHD)
viscous flow due to shrinking sheet for the cases of
two-dimensional and axisymmetric shrinking by
traditional homotopy analysis method (HAM), but in this
study solving the problem by present technique (HAM
Padé) for these cases, shows the results obtained by HAM
Padé good agreement compared to exact solution [20] and
other methods. Also the proposed technique has
succeeded to pridect and obtain the two branches of
solutions for important parameters.

2 The homotopy analysis method coupled
with Padé approximations(HAM Padé)

Consider the nonlinear ordinary differential equation in
unbounded domain:

f (r)(η)+ g
(

f , f ′, . . . , f (r)
)

− y(η) = 0 (1)

With boundary conditions

di f (η)
dxi

∣

∣

∣

∣

x=0
=Ai, f ′(η)|∞ =B, i= 0,1,2, . . . ,(r−2) (2)

g
(

f , f ′, . . . , f (r)
)

is the nonlinear function, andy(η) is the

non-homogeneous term. The equation (1) can be write in
the form

N̆[ f (η)] = 0, (3)

where N̆ is a nonlinear operator,η denote independent
variable, andf (η) is an unknown function. The first step
in this technique adds the new conditionf (r−1)(0) = α,
whereα is unknown parameter and will determine later,
we apply the traditional homotopy analysis method on the
problem

N̆[ f (η)] = 0, (4)

di f (η)
dxi

∣

∣

∣

∣

x=0
= Ai, f (r−1)(0) = α (5)

the general zero-order deformation equation and the
corresponding boundary conditions are as follows

(1− q)L [φ(η ,α,q)− f0(η ,α)] =

qh̄H(η)
(

N̆[φ(η ,α,q)]
)

, (6)

where q ∈ [0,1] denote the so-called embedding
parameter.̄h 6= 0 is an auxiliary parameter,L denotes is an
auxiliary linear operator,φ(η ,α,q) is an unknown
function,f0(η ,α) is an initial guess off (η ,α) andH(η)
denotes a non-zero auxiliary function. It is obvious that
when the embedding parameterq = 0 andq = 1, equation
(6) becomes

φ(η ,α,0) = f0(η ,α), φ(η ,α,1) = f (η ,α) (7)

respectively. Thus asq increases from 0 to 1, the solution
φ(η ,α,q) varies from the initial guessf0(η ,α) to the
solution f (η ,α). Expanding φ(η ,α,q) in the Taylor
series with respect toq, one has

φ(η ,α,q) = f0(η ,α)+
+∞

∑
n=1

fn(η ,α)qn, (8)

where

fn(η ,α) =
1
n!

∂ nφ(η ,α,q)
∂qn

∣

∣

∣

∣

q=0
(9)

The initial guessf0(η ,α) of the solutionf (η ,α) can be
determined by the rule of solution expression as follows.
expressed by a set of base functions

{

(η)k
∣

∣

∣
k = 0,1,2,3. . . .

}

, (10)

in the form

f (η ,α) =
+∞

∑
k=0

fk(α)
(

η)k (11)

The initial guess f0(η ,α) can be chosen from the
equation (11) so that it achieves the boundary
condition(5). The second goal is to determine the higher
order termsfn(η ,α)(n,1,2, . . . .). Define the vector

⇀
u i(η) = {u0(η ,α),u1(η ,α), . . . ,ui(η ,α)} (12)

Differentiating equation (6) n times with respect to the
embedding parameterq and then settingq = 0 and finally
dividing them by n!, we have the so-callednth-order
deformation equation:

L [ fn(η ,α)− χn fn−1(η ,α)] = h̄H(η)R
(⇀

f n−1(η ,α)
)

(13)

where

R
(⇀

f n−1(η ,α)
)

=
1

n−1!

∂ n−1
(

N̆[φ(η ,α,q)]
)

∂qn−1 |q=0, (14)

and

χn =

{

0 whenn ≤ 1
1 otherwise (15)

Now the solution of the nth-order deformation
equation(13) for n ≥ 1 whenH(η) = 1 becomes

fn(η ,α) = χn fn−1(η ,α)+L−1
[

h̄R
(⇀

f n−1(η ,α)
)]

(16)

and its boundary conditions(5) become

di f (η)
dxi

∣

∣

∣

∣

x=0
= 0, f (r−1)(0) = 0, (17)

can be easily solve the equations (16) and (17) by using
some symbolic software programs such as Mathematica
or Maple. In this way, starting byf0(η ,α), we obtain the
functionsfn(η ,α) for n,1,2,3, . . . . form equations (16,17)
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successively. Accordingly, theN−th order of approximate
solution of the problem (4) and (5) is given by

f (η ,α) ∼= FN(η ,α) =
N

∑
n=0

fn(η ,α) (18)

The auxiliary parameter̄h can be employed to adjust the
convergence region(Rh̄) of the series in the traditional
homotopy analysis solution. By means of the so-called
h̄-curve, it is straightforward to choose an appropriate
range forh̄ which ensures the convergence of the solution
series. As pointed out by Liao[21], the appropriate region
for h̄ is a horizontal line segment, but the series
solution(18) obtained by HAM Padé technique containing
the unknown parameterα, to find the convergence region
(Rh̄α) of this series, we can writef (β )(0, h̄,α) from
equation (18), as follows

f (β )(0, h̄,α)∼= F (β )
N (0, h̄,α)

=
γ

∑
i=0

giβ (h̄)α i, β = r,r+1,r+2, . . . (19)

The auxiliary parameter̄h can be employed to adjust the
convergence region of the series in the HAM Padé
technique solution(18), by plot gir(h̄), i(0,1, ..,γ) against
to the convergence controlling auxiliary parameterh̄, the
appropriate region for̄h is a horizontal line segment the
convergence regions of each functiongir(h̄), but the
convergence region (Rh̄α ) of the series(18) discover by
the intersection between the convergence regions togir(h̄)
functions, in general, the convergence region (Rh̄α ) is the
intersection between the convergence regions togiβ (h̄)
functions. Some problems don’t need to do so, if
f (r)(0, h̄,α) = g(h) f (α) then the convergence region not
depend on the unknown parameterα, by plotting g(h), we
get the convergence region(Rh̄α ). The advantage of the
proposed scheme to find the convergence region of the
series(18) not depend on the unknown parameterα.

Theorem 2.1.[22]. If the function f (η) is bounded for all
η > 0 : | f (η)| < M and the lim

η→∞
f (η) = f (∞) exists, then

lim
S→0

SF(S) = f (∞), where F(S) Laplace transform of

f (η).
Obviously in equation (18) the function f (η ,α)
Containing the unknown parameterα. Using Theorem
2.1, the condition f ′(∞) = B leads to the condition
lim
S→0

SF̃(S) = B, whereF̃(S) Laplace transform off ′(η).
Applying this condition to the corresponding Padé
approximate, we can use some symbolic software
programs such as Mathematica or Maple to perform this
task

3 Application

3.1 Problem Statement

In Cartesian coordinates the continuity and momentum
equations for MHD viscous flow are

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0 (20)

u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

=− 1
ρ

∂ p
∂x

− σB0
2

ρ
u+

ν
(

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)

(21)

u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂ z

=− 1
ρ

∂ p
∂y

− σB0
2

ρ
v+

ν
(

∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2v
∂ z2

)

(22)

u
∂w
∂x

+ v
∂w
∂y

+w
∂w
∂ z

=− 1
ρ

∂ p
∂ z

+

ν
(

∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2w
∂ z2

)

(23)

where ν = µ/ρ is the kinematic viscosityσ is the
electrical conductivity. We have applied the magnetic
field B0 in thez-direction and the induced magnetic fields
neglected. The above equations are derived by
considering the zero electric field and incorporating the
small magnetic Reynold number assumption. The
boundary conditions applicable to the present flow are

u =−ax, v =−a(m−1)y, w =−W, at y = 0,

u → 0 as y → ∞ (24)

In which a > 0 is shrinking constant,W is the suction
velocity.m = 1 when the sheet shrinks inx-direction only
and m = 2 when the sheet shrinks axisymmetrically.
Introducing the following similarity transformations

u = ax f ′(η , v = a(m−1)y f ′(η),

w =−
√

aνm f (η), η =

√

a
ν

z (25)

equation (20) is identically satisfied and equation (23) can
be integrated to given

p
ρ
= ν

∂w
∂ z

− w2

2
+ constant (26)

and equations (21), (22) and (24) reduces to the following
boundary value problem[17]

f
′′′
(η)−M2 f ′(η)− f ′2(η)+m f (η) f ′′(η) = 0, (27)

f (0) = s, f ′(0) =−1, f ′(∞) = 0, (28)

wheres =W/m
√

νa andM2 = σ B0
2
/

ρa.
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3.2 The Method Implementation and Results

The new boundary condition according (5)

f (0) = s, f ′(0) =−1, f ′′(0) = α, (29)

where α > 0. We choose only initial guessf0(η ,α)
according to initial condition (29) and equation (11)

f0(η ,α) = s−η +α
η2

2
, (30)

and choose the auxiliary linear operator

L[φ(η ,α, p)] =
∂ 3φ(η ,α, p)

∂η3 , (31)

with the property

L
[

c0+ c1η + c2η2]= 0. (32)

The solution of thenth-order deformation equation (16)
for n ≥ 1

fn(η ,α) = χn fn−1(η ,α) +h̄
∫ ∫ ∫

f ′′′n−1+

n−1

∑
j=0

(

m fn−1− j f ′′j − f ′n−1− j f ′j
)

−

M2 f ′n−1dηdηdη+c0+ c1η + c2η2 (33)

c0,c1,c2 are determined by the boundary condition
equation

f (0) = 0, f ′(0) = 0, f ′′(0) = 0 (34)

Now given the solution equation (33) at n = 1

f1(η ,α) =
1

120
h̄
(

−20+20M2+20msα
)

η3

+
1

120
h̄
(

10α −5mα −5M2α
)

η4

+
1

120
h̄
(

−2α2+mα2)η5 (35)

fn(η)(n = 2,3,4, ...) can be calculated similarly, the
approximate analytic solution is

f (η ,α) ∼= FN(η ,α) =
N

∑
n=0

fn(η ,α), (36)

Hencef (3)(0, h̄,α) is

f (3)(0, h̄,α)∼= F(3)
10(0, h̄,α) = g03(h̄)+ g13(h̄)α =

h̄
(

−1+M2)(10+45h̄+120̄h2+210̄h3+252̄h4 +

210̄h5+120̄h6+45h̄7+10h̄8+ h̄9
)

+

h̄msα
(

10+45h̄+120̄h2+210̄h3 +252̄h4+

210̄h5+120̄h6+45h̄7+10h̄8+ h̄9
)

(37)

Fig.1, h̄-curves ofg03(h̄) andg13(h̄) whenm = 2,s =
1, M = 2,the convergence region (Rh̄α ) of series (36) is
the intersection between the convergence regions tog03(h̄)
andg13(h̄), but from the equation (37) and Fig.1, find that
the functionsg03(h̄) andg13(h̄) in the same behavior but
movable only on the vertical axis therefore this problem is
a special case, can write

f (3)(0, h̄,α) = F(3)
10(0, h̄,α) = g(h̄)

(

−1+M2+msα
)

= h̄
(

10+45h̄+120̄h2+210̄h3 +252̄h4+210̄h5+

120̄h6+45h̄7+10h̄8+ h̄9
)

(

−1+M2+msα
)

(38)

From equation(38), the function f (3)(0, h̄,α) is
product of two functions, one only in̄h (g(h̄)) and other in
the parametersα, M,s andm, this means the convergence
region of the series solution not depend on the parameters
α, M,s andm, also the convergence region of the series
solution constant region for all different values of
parameters therefore,f ′′′(0, h̄,α) = g(h̄), we can plotting
g(h̄), against to the convergence controlling auxiliary
parameter h̄, to find the convergence region of the
solution series fig.2, the h̄-curve ofg(h̄) for N − th order
of approximation, it is easy to discover the valid region of
h̄ that corresponds to the line segment nearly parallel to
the horizontal axis (constantg(h̄) value), from fig.2. the
region of convergence(Rh̄α ) is [−0.5,−1.2].

g03

g13

-1.5 -1.0 -0.5 0.0
Ñ

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Fig. 1: h̄-curves ofg03(h̄) andg13(h̄) whenm = 2, s = 1, M = 2
at 10− th order

7-th order

10-th order

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2
Ñ

-1.005

-1.000

-0.995

-0.990

-0.985

gHÑL

Fig. 2: h̄-curve ofg(h̄) in equation (38) for differentN− th order
of approximation
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From equation (19), f (4)(0, h̄,α) is

f (4)(0, h̄,α) = F(4)
10(0, h̄,α) = m

(

−1+M2)s h̄2(45+

240̄h+630̄h2+1008̄h3+1050̄h4+720̄h5+

315̄h6+80h̄7+9h̄8
)

+
(

m2s2 h̄2(45+240̄h+

630̄h2+1008̄h3+1050̄h4+720̄h5+

315̄h6+80h̄7+9h̄8)+
(

−m−2+M2) h̄(10+

45h̄+120̄h2+210̄h3+252̄h4+

210̄h5+120̄h6+45h̄7+10h̄8+ h̄9
))

α (39)

In spite of f (3)(0, h̄,α) in this problem is a special case, it
is possible to clarify the idea of the proposed scheme to
find a convergence region((Rh̄α ), fig.3. h̄-curves of
g04(h̄) and g14(h̄) in equation (39) when m = 2,s = 1,
M = 2 at 10− th order, the convergence region the
intersection betweeng04(h̄) and g14(h̄) almost the same
region intersection betweeng03(h̄) andg13(h̄) , with the
assertion that the functionsg04(h̄) andg14(h̄) do not have
the same behavior.

g04

g14

-2.0 -1.5 -1.0 -0.5 0.0
Ñ

5

10

15

20

Fig. 3: h̄-curves ofg04(h̄) andg14(h̄) whenm = 2, s = 1, M = 2
at 10− th order

To find the unknown parameterα = f
′′
(0). Using

Theorem 2.1, the conditionf ′(∞) = 0leads to the
condition lim

S→0
SF̃(S) = 0, whereF̃(S) Laplace transform

of f ′(η). Applying this condition to the corresponding
Padé approximate[t/t] for small values oft, we get the
value of unknown parameterα = f

′′
(0). Table1, Shows

comparison of the value ofα = f
′′
(0) obtained by the

present method and the numerical solution [23],
traditional homotopy analysis method(HAM)[17],
homotopy Perturbation method coupled with Padé
approximations(HPM- Padé)[24] and Adomian
decomposition method coupled with Padé
approximations(ADM-Padé)[25] when m = 2, s = 1,
M = 2 at h̄ = −1 and different N − th order of
approximation, table1, also shows the good agreement
between results obtained by the present method with
other applied methods, in spite of the present method
need only small values oft but other methods like[24,25]
used large values oft and the results of the present

method accurate than [24,25] to the numerical solution
[23], table1, also shows the value ofα has not changed to
increase the number of order approximation fromN = 10
to 15 order. Table2. shows that the value ofα = f

′′
(0) for

the diagonal approximate[6/6] for different values ofα
when m = 2,s = 1,M = 2. Table 2, shows when
h̄ ∈ [−0.7,−1.1] given the value ofα six decimal places
uncertain compared by the numerical solution[23], this
means the solution obtained by the present method is
more general as compared to homotopy perturbation
method coupled with Padé approximations(HPM-Padé)
[24] and Adomian decomposition nethod coupled with
Padé approximations (ADM-Padé) [25].

Table 1: Comparison of the value ofα = f
′′
(0) obtained by the

present method and the other methods whenm = 2, s = 1, M = 2
at h̄ =−1 and differentN − th order of approximation

N − th order 10 15

Present Methodα = f
′′
(0) [4/4] 2.89161032 2.89161032

[5/5] 2.8916048 2.8916048
[6/6] 2.8916046 2.8916046
[7/7] 2.8916046 2.8916046

HPM-Padé[24] [10/10] 2.89161
ADM Padé[25] [25/25] 2.89160
HAM[ 17] 2.89160
Numerical[23] 2.8916045

Table 2: The value ofα obtained by the present method for
different values of̄h at 15− th order, whens = 1, m = 2, M = 2

h̄ −0.5 −0.7 −0.8 −1 −1.1 −1.2
α[6/6] 2.891559 2.8916049 2.8916046 2.8916046 2.8916048 2.891607
Numerical[23] 2.8916045

For the special case ofm = 1, the exact solution of
equation(27) is [20]

f (η) = s− 2

s±
√

s2− (4−4M2)
+

2

s±
√

s2− (4−4M2)
e

s±
√

s2−(4−4M2)
−2 η , (40)

f ′′(0) =
s±

√

s2− (4−4M2)

2
(41)

In order to have a physical solution,f ′′(0) > 0 is
required[20] so the solution exists only fors is positive
with s2 ≥ 4

(

1−M2
)

; also, whenM ≥ 1 we find only one
solution for different values ofs, however, for 0< M < 1,
there are two solution branches, for exampleM = 0.5 of
equation (41) we find that the two solutions are ats >

√
3,

at s =
√

3 find only one solution ands <
√

3 no solution.
Table 3, shows a comparison of the present method
multiple solutions for α = f

′′
(0) against the exact

solution and numerical solution whenm = 1,M = 0.5 for
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different values ofs ≥
√

3 ath̄ =−1, table3, shows when
s >

√
3 the results of the present method are the same of

the exact solution but the numerical method [23] found
only the upper solution, also from table3, the value ofα
obtained by the present method whens =

√
3 only one

solution, the lower and upper solution to have the same
value according to the exact solution(41), therefore the
results clearly demonstrate the efficiency, accuracy and
simplicity of the present method. We don’t compare with
[24,25] because the authors of [24,25] have not studied
this case. The figs.4 and 5 show the form of velocity

Table 3: Comparison of the present method multiple solutions
for α = f

′′
(0) against the exact solution[20] and numerical

solution[23] when m = 1, M = 0.5 for different values ofs at
h̄ =−1

Lower Solution Upper Solution
s HAM Padé[6/6] [20] HAM Padé[6/6] [23] [20]
1.9 0.559488 0.559488 1.3405125 1.3405083 1.3405125
1.85 0.600000 0.600000 1.250000 1.250000 1.250000
1.8 0.655051 0.655051 1.1449489 1.1449427 1.1449489
1.75 0.750000 0.750000 1.0000000 1.0000000 1.0000000
1.73 0.8660254 0.8660254 0.8660254 - 0.8660254

profiles f ′(η) for different values of the parameterss and
M. In these figures (a) corresponds to the
two-dimensional shrinking(m = 1) and (b) corresponds to
axisymmetric shrinking (m = 2). It is shown in fig.4 that
the velocity increases by increases the suction parameters
for both two dimensional and axisymmetric shrinking.
The effect of the Hartman numberM on the velocity are
similar to that of suction parameter and are shown in fig.
5.

s=0.2, 0.6, 1, 1.4, 1.8

fig 4(a)
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fig 4(b)
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Fig. 4: The velocity profile obtained by present method when
whenM = 2 and several values ofs (a) m = 1 (b) m = 2

M=1, 1.3, 1.5, 1.8, 2

fig 5(a)
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fig 5(b)
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Fig. 5: The velocity profile obtained by present method when
s = 1 and several values ofM (a)m = 1 (b) m = 2

s= 1.75, 1.8, 1.85, 1.9
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Fig. 6: The velocity profile (lower and upper) obtained by present
method whenm = 1, M = 1/2 and several values ofs

Fig. 6 shows the multiple solutions obtained by
present method for the two dimensional shrinking case
when M = 1/2 and several values ofs, from fig. 6, the
lower solution profiles are generally further away from
the wall compared with the upper solution branch even
though the suction parameters at the sheet is the same.
Finally , as shown in fig.7. Comparison off (η) and f ′(η)
obtained by the present method against the exact solution
whenm = 1, M = 1/2 ands =

√
3, it has been attempted

to show the accuracy, capabilities of the present method.
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fig 7(a)
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Fig. 7: Comparison off (η) and f ′(η) obtained by the present
method against the exact solution whenm = 1, M = 1/2 ands =√

3.

4 Conclusion

The proposed technique combined between homotopy
analysis method and traditional Padé approximation
approach was presented for solving the nonlinear
boundary value problem with one boundary condition at
infinity. This technique succeeded in solving the MHD
viscous flow due to a shrinking sheet. The figures1, 2 and
3 and table2, show that the proposed technique is more
general as compared to some other methods such as
HPM-Padé and ADM-Padé techniques. The results are in
well agreement with the existing results and therefore
elucidate the reliability and efficiency of the technique.
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